Awareness and Localization of Explosives-Related Threats (ALERT)
A Department of Homeland Security Center of Excellence

Video Tracking of Passengers and Divested Objects at a Checkpoint

David Castañón, Boston U.
So What? Who Cares?

- **Space**: Monitoring passengers and their divested items in airport security checkpoints
- **Problem**: Automatically detect events of interest at checkpoint (left-behind, theft, …), facilitate risk-based screening
- **Solution**: Computer vision tracking algorithms plus event detection
- **Results** (Passengers/Divested Items/Transfers): \(P_D = 100/90/93, P_{FA} = 8/8/0 \)
- **TRL**: 4 at end of Phase I
 - Working to increase TRL level, address harder scenarios, corner cases
 - Can deploy with limited functionality, evolve to meet additional requirements

→ Support APEX Screening at Speed
Correlating Luggage and Specific Passengers (CLASP)

Objective: Develop automated tracking algorithm (ATA) to track passengers and divested objects at a checkpoint and detect exceptions such as theft and left-behind items.

Benefits to TSA
- **Improved detection performance**
 - Support risk-based screening
 - Potential to integrate information from multiple sources
 - Mix trusted and regular travelers
 - Enhanced situational awareness at checkpoint
 - Reduce cognitive load on TSOs
- **Better passenger experience**
 - Identify bottlenecks and automatically redirect flow/change operation
 - Rapid identification/resolution of events: left-behind items, thefts, ...
Performers

- **Phase 1: Ended June 2018**
 - Rich Radke
 - Octavia Camps
 - Avi Kak
 - Henry Medeiros
 - Stan Sclaroff
 - Venkatesh Saligraman

- **Phase 2: Sept. 2018 – now**
 - Consolidated team
 - Distributed tasks

- **Performers**
 - Rich Radke
 - Octavia Camps
 - Avi Kak
 - Henry Medeiros
 - Stan Sclaroff
 - Venkatesh Saligraman

- **Performers**
 - Rich Radke
 - Octavia Camps
 - Henry Medeiros
Data Collection Facility

- Simulated checkpoint at Kostas Research Institute at NEU
 - Real transportation security equipment and mock equipment
 - X-rays, AIT, Trace, etc. (disabled)
 - Rapiscan, Smiths: Thank you for equipment

- 19 video cameras

- Data collection
 - Actors followed scripts to create events
 - (e.g., theft, left-behind, passenger transfers, etc.)
 - Ground truth generated
 - Automated scoring tools & metrics created
 - Data, metadata and tools in public domain
PAX & Baggage Detection

- PAX & baggage
 - SSD detection
 - Candidate edges
 - Predicted search regions

- Bin contents
 - Estimated bin contour
 - Candidate scene features
 - Predicted search regions
 - Candidate edges
 - SSD detection
ATA PAX or DVI output is correct if IoU (intersection over union) > threshold
 - Default IoU threshold = 0.3 for PAX, 0.5 for DVI

PD = # ATA hits / # GT objects

PFA = # ATA false alarms / # GT objects

ATA transfer (XFR) event is correct if it occurs within ± 30 frames of GT XFR

Switch registered if ATA label changes

Mismatch registered if ATA PAX-DVI association disagrees with GT on divestment
Phase I Results

- Metrics require annotated videos
 - Labor intensive – tracking multiple PAX, TSO, DVI, cameras
 - Many situations to consider (e.g., occlusion)
- Investigating other annotation methods
- Large data required for machine learning algorithms

<table>
<thead>
<tr>
<th>Tracking Metric (%)</th>
<th>Camera 9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RPI/NEU</td>
</tr>
<tr>
<td>P_D (PAX)</td>
<td>95.0</td>
</tr>
<tr>
<td>P_D (DVI)</td>
<td>91.4</td>
</tr>
<tr>
<td>P_D (XFR)</td>
<td>87.5</td>
</tr>
<tr>
<td>P_{FA} (PAX)</td>
<td>27.5</td>
</tr>
<tr>
<td>P_{FA} (DVI)</td>
<td>25.0</td>
</tr>
<tr>
<td>P_{FA} (XFR)</td>
<td>0.1</td>
</tr>
<tr>
<td>P (PAX switch)</td>
<td>0.0</td>
</tr>
<tr>
<td>P (DVI switch)</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Spiral Development

- **CLASP1**
 - Simplified scenarios (e.g., 1 item/bin)
 - Allowed development of mock checkpoint, scoring tools, annotations, TRL~3 tracking algorithms

- **CLASP2**
 - More realistic scenarios; TRL~5 algorithms, improved metrics
 - Interaction with airports
 - Workstation requirements and (optional testing)
 - Real time implementation of algorithms
 - Initial engagement with industrial partners
Objectives of Phase II

- Improving P_D/P_{FA}
 - Fine-tuning for PAX/DVI
 - Improving/leveraging camera geometry
 - Multi-camera integration

- Events
 - Person to person transfer
 - Secondary inspection

- Track additional corner cases
 - PAX in wheelchairs, children on strollers; family units

- CLASP 2 – received funding to continue developing the algorithms and to explore transition to the field
Potential Concept of Operations

Near Term
- Single separate CLASP workstation monitoring multiple screening lanes, from entry of checkpoint to exit
- Alert on possible transfer of ownership of items to operator, who can direct remediation actions
- Alert on left-behind items in real time, identifying ownership

Longer Term?
- Integration of CLASP information into appropriate monitoring systems
- Risk-based screening exploiting CLASP output to perform appropriate screening on PAX and their divested items
- ...

Need more interactions with stakeholders to define needed functionality and desired performance requirements.